

OPERATIONS & LOGISTICS MANAGEMENT IN AIR TRANSPORTATION

PROFESSOR DAVID GILLEN (UNIVERSITY OF BRITISH COLUMBIA) & PROFESSOR BENNY MANTIN (UNIVERSITY OF WATERLOO)

Istanbul Technical University

Air Transportation Systems and Infrastructure

Air Transportation Management

Strategic Planning

M.Sc. Program

Case Study: 9 June 2014

Case Study: Kristen Cookies

LEARNING OBJECTIVES

- Primary:
 - Introductory activity to the basics of process analysis:
 - Set- up times
 - Throughput times
 - cycle time
 - ...
- Secondary:
 - Gantt charts

OVERVİEW

• You are about to open a two-person midnight cookie baking operation which involves several stages:

Kristen's Cookie Discussions

- 1. How long will it take to fill a rush order?
- 2. How many orders can you fill in a night (4 hours)?
- 3. How much of your own and your roommate's time will it take to fill each order?
- 4. Any discount for two-dozen orders? Will it take you any longer to fill a two-dozen order than a one-dozen order?
- 5. How many food processors? Baking trays?
- 6. Any change to the production plans? Bottleneck? Another oven?
- Use the Gantt chart template

esources

Du

Dommate

Jen 1

Jen 2

KRISTEN'S COOKIE LINEAR FLOW CHART

KRISTEN'S COOKIE SWIM-LANE (DEPLOYMENT) FLOW CHART

KRISTEN'S COOKIE GANTT CHART

1. How long will it take to fill a rush order?

This is **throughput** time and equals 26 minutes

2. How many orders can you fill in a night (4 hours)?

What are you looking for to determine the answer?

Capacity! Capacity is the bottleneck (slowest stage) = baking time = 10 minutes

Cycle time for system is = cycle time for bottleneck

In 4 hours can make **24 orders** (6 per hour (since 10 minutes each) and 4 hrs)

<u>BUT</u> may need time for set up and clean up therefore conservatively 22 dozen (concept of effective capacity)

3. How much of your own and your roommate's time will it take to fill each order?

This is labour time: baking is bottleneck, therefore other activities have excess capacity (idle time)

For a 1 dozen cookie order total Labour time = **12 min**In each cycle you are working 8 minutes and you roommate

works 4 minutes

4. Any discount for two-dozen orders? Will it take you any longer to fill a two-dozen order than a one-dozen order?

No discounts, why? **Bottleneck operations capacity is independent of order size**.

For example, 2 orders: mixing takes 10 minutes (6 min mix, 4 min for spooning out to 2 trays), **Baking still takes 10 min per dozen**.

5. How many food processors? Baking trays?

1 processor since baking is bottleneck but

several trays:1 in oven, 1 being prepared for oven, 1 cooling

6. Any change to improve the production plans? Bottleneck? Another oven?

To remove bottleneck: add an oven (therefore now 2 ovens) Thus, capacity increases from 6 doz per hour to 12 doz per hour.

Mix and spoon 7.5 per hour

Bake 12 per hour

Cool 5 minutes

Pack 30 per hour

Receive \$\$ 60 per hour

Where is bottleneck now??

Mix & spoon therefore capacity is 7.5 doz cookies per hour